130 Java™ 2: The Complete Reference

language is built becausefi_g defines the shape and nature of an object. As sych
the class forms the basis for object-oriented programming in Java. Any concept '
you wish to implement in a Java program must be encapsulated within a class.
Because the class is so fundamental to Java, this and the next few chapters will be
devoted to it. Here, you will be introduced to the basic elements of a class and learn
how a class can be used to create objects. You will also learn about methods, constructors

and the this keyword.

The class is at the core of Java. It is the logical construct upon which the entire Java

e e e T ——

|_| Class Fundamentals

Classes have been used since the beginning of this book. However, until now, only the
most rudimentary form of a class has been used. The classes created in the preceding
chapters primarily exist simply to encapsulate the main() method, which has been used
to demonstrate the basics of the Java syntax. As you will see, classes are substantially
more powerful than the limited ones presented so far.

Perhaps the most important thing to understand about a class is that it defines a
new data type. Once defined, this new type can be used to create objects of that type.
Thus, a class is a template for an o‘tziectE and an object is an instance of a class. Because an
object 1s an instance of a class, you will often see the two words object and instance used
interchangeably.

The General Form of a Class

When you define a class, you declare its exact form and nature. You do this by specifying
the data that it contains and the code that operates on that data. While very simple classes
may contain only code or only data, most real-world classes contain both. As you will
see, a class’ code defines the interface to its data.

A class is declared by use of the class keyword. The classes that have been used up
to this point are actually very limited examples of its complete form. Classes can (and
usually do) get much more complex. The general form of a class definition is shown here:

class classname {
type instance-variablel;
type instance-variable2;

/] . 7

type instance-variableN;

type methodnamel(parameter-list) {
// body of method
}

type methodname2(parameter-list) {
// body of method

Scanned with CamScanner

Chapter 6: Introducing Classes 131

)
I

type rm‘a‘hminmm‘N(j3mmm’lvr-h‘m) {
/ / body of method
I
l

The data, or variables, defined within 4 o

is contained within nicthods. Collectively, the methods and variables defined within
a class are called members of the class. In most classes, the instance variables are acted

‘upon and accessed by the methods defineq for that class. Thus, it is the methods that
determine how a class’ data can be used.

Variables defined witlﬁn’n a class are called instance variables because each instance
of the clas the class (that is, each object of the cTass) contains its own copy of these variables.
Thus, the data for one obiject is separate and unique from the data for another, We
“will come back to this point shortly, but it is an important concept to learn early.

All methods have the same general form as main(), which we have been using thus
far. However, most methods will not be specified as static or public. Notice that the
general form of a class does not specify a main() method. Java classes do not need to

have a main() method. You only specify one if that class is the starting point for your
program. Further, applets don’t require a main() method at all.

ass are called instance variables. The code

MI C++ programmers will notice that the class declaration and the implementation of the
methods are stored in the same place and not defined separately. This sometimes makes

for very large .java files, since any class must be entirely defined in a single source file.
This design feature was built into Java because it was felt that in the long run, having

specification, declaration, and implementation all in one place makes for code that is
easier to maintain.

\ Simple Class

Let’s begin our study of the class with a simple example. Here is a class called Box that
defines three instance variables: width, height, and depth. Currently, Box does not contain
any methods (but some will be added soon). g

class Box {
double width;
double height;
double depth;

y MUEEE ¥ 2 ,

As stated, a class defines a new type of data. In this case, the new data type is called
Box. You will use this name to declare objects of type Box. It is mportant to remember

Scanned with CamScanner

Java™ 2: The Complete Reference

g nol create an actual object, Thy,
qulncunu-hﬂn(wndennh
nt like the following:

that a class declaration only creates a template; it doc
the preceding code does not cause any objects of type
To actually create a Box object, you will use a stateme

! e ‘ vl my hox
Rox mybox new Box{(): // create @8 BOoX object €a | 1ed Y
— e —ly . ‘
i1l be an instance of Box. Thus, it will have
aboul the dotails @f this statement,

ou are creating an object that
able defined by the class. Thus, every Box

ance variables wid -'md d T
The dot operator links the name™

3

After this statement execules, mybox w ,
moment, don’t worry

ate an instance of aclass, y

“physical” reality. For the

Again, each time you €r¢ .
containg its own copy of cach inslance \.-'nrt
o its own copies of the inst

object will contain1 S :
l ~ou will use the perator. . .
able. For example, to assign the width

access these yar 3 . :
7o object with the name of an instance varl . '
100, you would use the following statement:

of
variable of mybox the value

-

y.yl:ox.width = 100;

E

This statement tells the compiler to assign the copy of width that is contained within
he dot operator to access both

the mybox object the value of 100. In general, you use t
the instance variables and the methods within an object.
Here is a complete program that uses the Box class:

-
. |
§ /* A program that uses the Box class.

o e

call this file BoxDemo.java

* J
4

T e e

class Box {

; double width;

I double height;
double depth;

// This class declares an object of type Box.
class BoxDemo {
public static void main(String args(]) ({

Box mybox = new Box();

double vol;

// assign values to myhox's instance variables

mybox.width = 10;
Scanned with CamScanner

—— e

Chapter 6: Introducing Classes

mybox.height = 20;
mybox.depth = 15;

// compute volume of box
vol = mybox.width * mybox.height = mybox.depth;

System.out.println("volume ig » ., vol) ;

You should call the file that contains this program BoxDemo.java, because the main()
method is in the class called BoxDemo, not the class called Box. When you compile this
program, you will find that two .class files have been created, one for Box and one for
BoxDemo. The Java compiler automatically puts each class into its own .class file. It is
not necessary for both the Box and the BoxDemo class to actually be in the same source
file. You could put each class in its own file, called Box.java and BoxDemo.java,

respectively.
To run this program, you must execute BoxDemo.class. When you do, you will see

the following output:
Volume is 3000.0

As stated earlier, each object has its own copies of the instance variables. This
means that if you have two Box objects, each has its own copy of depth, width, and
height. It is important to understand that changes to the instance variables of one
object have no effect on the instance variables of another. For example, the following

program declares two Box objects:
// This program declares two Box objects.

class Box
double width;
double height;
double depth;

=
&
&
By
g
&

class BoxDemo2 {
public static void main(String args[])

Box myboxl = new Box();

Box mybox2 = new Box();

{

AR T g

Scanned with CamScanner

1

l

_| Declaring Objects

Jaya™ 2: The Complete Reference

]

double vol;

| ‘ // assign values to mybox1's instance variables
mybox1.width = 10;

myboxl.height = 20;

mybox1.depth = 15;

S —

B

/* assign different values to mybox2's

—tiid

f instance variables */
] mybox2.width = 3;

mybox2.height = 6}

mybox2.depth = 9;

// compute volume of first box
vol = myboxl.width * myboxl1.height * mybox1.depth;

System.out.println("Volume is " + vol);

| // compute volume of second box
! vol = mybox2.width * mybox2.height * mybox2 .depth;
System.out .println("Volume is " + vol);

e o s

ErTEns

The output produced by this program is shown here:

Volume is 3000.0
Volume is 162.0

As you can see, mybox1’s data is completel
b ’ sepa :
in mybox2. pletely separate from the data contained

s e
B R

As just explained, when you create a class,

. 0 3
use this type to declare objects of that ty'pe_y U are creating a new data type. You can

However, obtaining objects of a class is a

r 64MP. Al QUAD CAMERA

Shot on realme 6

Scanned with CamScanner

Vv

Chapter 6: tntroducing Classes

{orvﬂﬂ‘ is th(\n Stl‘ll-cd n ll‘u_! Vﬂl‘ii‘lhk‘ Thlll
% o] ¥ .]
This f{:‘im”\. allocated. Let’s Took at the (e
vind p'mcuding Se‘lmplc programs

L
Inthe : ¢
0 abject of type Box:

3 . I‘
I Java, all class objects must b

tails of 1his procedure.

a line sima , clare
A line similay 1o the following is used to decl

E svbox = new Box () ;
| BO» H™

- qatement combines the two steps jusl de
is Sle

: more clearly: scribed, It can be rewritten like this to
ach step Lt i &

chow €

ER
rox: // declaveireferchicn -
fox mybox: declave ‘zeference i ob' ot

i { h f £ : f ; =)) . .
.I”_'.'}.'OX = new BO)\{) L all Jcate a Eox Dl e

The first line declares n_1yb0x as a reference (0 an object of type Box. After this line
accutes, mybox contains the value null, which indicates that it does not yet pointto
anactual object. Any attempt to use mybox at this point will result in a compile-time
orror. The next line allocates an actual object and assigns a reference to it to mybox.
After the second line executes, you can use mybox as if it were a Box object. But in

reality, mybox simply holds the memory address of the actual Box object. The effect
of these two lines of code is depicted in Figure 6-1.

Statement Effect
Box mybox; null
mybox
mybox = new Box(); 1= |, Width
mybox Height
' Depth
Box object
Figre 6-1. Declaring an object of type Box

e S

Scanned with CamScanner

m 2: The complete KHereronyey
d .

Jav

A + lave probably noticed that object rc’f erences appe o
ders familiar with C/C+ f correct. An object reference isar

| Thosc 1¢7 + vons This suspicion is, essentially, = F
a1 pointers. g § '

M o be similar }xory pointer. The main difference—and the key to Java’s safety—;s they |

Jar to a men (can actual pointers. Thus, you cannot cqy, m |

y s vefer < 01
nanipulate references asy

sini
t to an arbitrary memory location or manipulate it like an infege,

ot 1
you cantil .
object reference 10 poin

closer Look at new

: ry for an obj
As just cxplained, the new operator dynamically allocates memory _13@_&_1_!_}_113

this general form: > 4 fBC‘Z‘QQ Zgﬁ W O 50'9(,'[1"_,

class-var = new classname();]

'y

Here, class-var is a variable qf the class type being created. The classnanie is the name of
lass that is being instantiated. The class name followed by parentheses specifies the
t.lle = . lass. A constructor defines what occurs when an object of a clasg
~onstructor for the class: NM{_/\&/D\/-L\,_\{_‘
s created. Constructors are an important part of all ¢ asses and have many 51'gn} 1cant
Stiibutes. Most real-world classes explicitly define their own const'ructo.rs within their
class definition. However, if no explicit constructor is specified, then Java .w1]l automaticauy
supply a default constructor. This is the case with Box. For now, we will use the defay]t
constructor. Soon, you will see how to define your own constructors.

At this point, you might be wondering why you do not need to use new for such
things as integers or characters. The answer is that Java’s simple types are not implemented
s objects. Rather, they are implemented as “normal” variables. This is done in the interest
of efficiency. As you will see, objects have many features and attributes that require Java
o treat them differently than it treats the simple types. By not applying the same overhead
o the simple types that applies to objects, Java can implement the simple types more
fficiently. Later, you will see object versions of the simple types that are available for
our use in those situations in which complete objects of these types are needed.

Itis important to understand that new allocates memory for an object during run
me. The advantage of this approach is that your program can create as many or as
W objects as it needs during the execution of your program. However, since memory
finite, it is possible that new will not be able to allocate memory for an object because
sufficient memory exists. If this happens, a run-time exception will occur. (You will
arn how to handle this and other exceptions in Chapter 10.) For the sample programs
 this t.)ook, you won'’t need to worry about running out of memory, but you will need
* ConS}der this possibility in real-world programs that you write.

Let’s once again review the distinction between a class and an object. A class creates g
new data type that can be used to create objects. That is, a class creates a logical 'gm
a_mework that defines the relationship between its members, When you declare an 3
?]zﬁt?gtazﬁiisl;_yotuhare crea'ting an .instance gf that cl:ass. "Ihus,.a class is a logical
s impost ject has Phy§lcf11 reality. (That is, an object occupies space in memory.)

portant to keep this distinction clearly in mind. .-

Scanned with CamScanner

g lasses
Chapter 6: Introducing ©

137

R
s

| resigning Object Reference Variables b
| ASS sference variables act differen ou might expect when an 2551&,

7 obect l1';:(’ For example, what do yo i e fol]owing fragment does?

| ukesplace

: Igox bl = new Box();

= bl;

m
o
b
o
[
)

ight think that b2 is being assigned a refe
You n};Ilg That is, you might think that by and
to by ’e.l' this would be wrong. Instead
Pot‘l:f:‘ far to thie same object. The assign
b

copy any part of the original object.
of

It simply makes b2 refer to the same object as -
does b1. Thus, any changes made to thg objec
0 e

! through b2 will affect the object to
~hich b1 s referring, since they are the same g2 _

. d
Fence to a copy of the Ob,]e(.:t rEfegF:ctS-
b2 refer to separate and distinct obj

» after thig fragment executes, b1 and b2 will
ment of

Object,
" This situation is depicted here:

b1

Box object

—1

b2 ?

-~

Although b1 and b2 both refer tqo the
way. For example, 5 subsequent asg;

original object withoyt affecting the object or aff

Box b1l
Box b2
'

bl - null,;

[l

new Box{);
bl;

H

st one object reference variable to anotliey obj
| are not Creating '

Scanned with CamScanner

™ 2: The Complete Reference

g lavd :

| Introducing Methods
classes usually consist of two 'hings-_

; s bepinning, of this chapter

mentioned at the bey y ol | . ‘ b ,
i riables and methods. I'he topic of methods is a large one because Java gives
‘h power and flexibility. In fact, much of the next chapter is devoted i

there are some fundamentals that you need to learn now so thyy

instance va
(them s0 min

methods. However, l
vou can begin to add methods to your classes.

\/}ﬁL is the general form of a method:

| type H.rmt‘(;‘-'l"f””l”‘,”"”*f) b s

'/ / body of method

|

a returned by the method. This can be any valid type,
ncluding class ale. If the method does not rcturrr} a value, its return
Bpe must be void. The name of the method 1s specified by mmn’.vlhls can be any legal
Sdentifier other an those already used by other items within the current scope. [Re
;,“-'”,-H»h-r-f,'_...“ 1S a quuvlu'g__qf type .m‘d identifier pairs separated by commas. Par?‘"‘mgtﬂs
essentially ~—TaDles that recetve thc:'_.\;illue of the _r_?i'gy_u_fgntq passed to the method when

Here, type specifies the type of dat
types that you cre

are TG : :
1tis calledy If the mothod has no parameters, then the parameter list will be emptv'._'

Methods that have a return type other than void return a value to the calling routine

using the following form of the return statement:

return value;

Here, value is the value returned.
In the next few sections, you will see how to create various types of methods,

including those that take parameters and those that return values.

Adding a Method to the Box Class

Although it is perfectly fine to create a class that contains only.data, it rarely happens. Most
of the time vou will use methods to access the instance variables defined by the class.
In fact, methods define the interface to most classes. This allows the class i;nplcmcnlm
to hide the specific layout of internal data structures behind cleaner method abstractions
In addition to defining methods that provide access to data, you can also define methods
that are used internally by the class itself. J
et o etk 8 e
bt v ”::" Sl s 8] rograms that the computation of a box’s volume was
g as best handled by the Box class rather than the BoxDemo class. Altet

Scanned with CamScanner

P

geing Classes 139

Chapter 6: Introd

X s
e l:: ?1::::\i‘t]h'lfk‘];cndum Upon the size of the box, it m
ass comyj O Ao this, You mygy add a method to Box.

akes sense to .
4 -
as shown her

. . Vincludeg
e progran S a Mk ' . |
This } hog INside the 1hox SRk

class BOX {
gouble width;
double height;
double depth;

// display volume of 4 b

void volume() ({ CX./
— A
System_cut_prlnt(llvolume : “) m’é’é—iw

System.out .print ln(width *d y
} : height = depth) ;.

ch\ass BoxDemo3 {
| pyblic static Void . = i
©X mybox]1 = new Bok () , ing argspy) {
Box myb0x2 = i

/7 assign valueg
m}fboxl_width .
"YPox1. heighe _
Trbox1.depth

O myboy g

15,

/*

Scanned with CamScanner

140 Java™ 2: The Complete Reference

3000.,0
162.0

Volume is
Volume 18

" ines of code:
Look closely at the following two lines of code

mybox1 . volume ()3
mvbox2 .volume () ;
§ ™

: : v > box1. That is, it calls vo]

\ first line here invokes the volume() lﬂ.{.lh()d on my Ume(
113;:‘&:: tml T]Lu :;Wboxl object, using the object’s name followed by the f:lot Operatoy.

Th‘uq the call to mybox1.volume() displays the volume of the box de_zfmed by Myboy

md .tilc call to myboxz.volume() displays the volume of the box defined by Myboy, '

Each time volume() is invoked, it displays the volume for the specified b‘ox.
If vou are unfamiliar with the concept of calling a method, the following diSCUSSiQn

will help clear things up. When mybox1.volume() is executed, the Java run-tin}e Systen
transfers control to the code defined inside volume(). %\fter the. statements inside
volume() have executed, control is returned to the calling routine, and execution
resumes with the line of code following the call. In the most general sense, a methog
is Java’s way of implementing subroutines. :

There is something very important to notice inside the volume() method: the
instance variables width, height, and depth are referred to directly, without Preceding
them with an object name or the dot operator. When a method uses an instance variabje
that is defined by its class, it does so directly, without explicit reference to an object apq
without use of the dot operator. This is easy to understand if you think about it. A method
is always invoked relative to some object of its class. Once this invocation has occurreq,
the object is known. Thus, within a method, there is no need to specify the object a second
time. This means that width, height, and depth inside volume() implicitly refer to the
copies of those variables found in the object that invokes volume().

Let’s review: When an instance variable is accessed by code that is not part of the
class in which that instance variable is defined, it must be done through an object, by
use of the dot operator. However, when an instance variable is accessed by code that is
part of the same class as the instance variable, that variable can be referred to directly.

The same thing applies to methods.

Returning a Value
While the implementation of volume() does move the computation of a box’s volume
inside the Box class where il belongs, it is not the best way to do it. For example, what
if another part of your program wanted to know the volume of a box, but not display
its value? A better way to implement volume() is to have it compute the volume of the
box and return the result to the caller. The following example, an improved version of
the preceding program, does just that:

Scanned with CamScanner

Chaptor 6: introducing c“""l #

volume () returng the

] Nt“\'l
ff Vo) Ul
' w box.

class BoX

class

'7) vol = myboxl.volume();

R

{
double width;
double height;
double depth;

/1 compute and return voluyme
double volume () {

return width * height » gepy,

BoxDemo4 {

public static void main{String args(])
Box myboxl = new Box(); {
Box mybox2 = new Box();

double vol; -

// assign values to myboxl's instance variables

mybox1.width = 10;
mybox1.height = 20;
myboxl.depth = 15;

J* assign different values to mybox2's
instance variables */
mybox2.width = 3;
mybox2.height = 6;
myb0x2.depth = .9;

// get volume of first box

System.out.printin("Volume is " + vol) ;
// get volume of second box
_:} vol = mybox2.volume();
" 4+ -vol);

% — .
System.out .println("Volume 1s
} :

lw-ﬂ‘N.'LJ" e

Scanned with CamScanner

—]

Jaya™ 2: The Complete Reference

he right side of an assignmey,

d, it is putont e val
ojve the value re
cel ¢ r(lllrn{ni

1e() is calle
at will re

As vou can see, when volun
in this casc vol, th

statement. On the leftisa variable,
by volume(). Thus, alter

vol = myboxl volumel):

ybox1 volume() is 3,
tant things to underst

hen is stored in vol

000 and this value t
g values:

and about returnin

atible with the return ty
type of some method ispe

executes, the value of m
There are two impor

a returned by a me
d. For example,
mn an integer.

thod must be comp

H The type of dat
if the return

specified by the metho
boolean, you could not retu

B The variable receiving the val
must also be compa tible with the retur

nt: The preceding program can be writ
tually no need for the vol variable. Th

tin() statement directly, as shown here:

od (such as vol, in this case)
ecified for the method.

ten a bit more efficiently

One more poi
e call to volume() could have

because there is ac
been used in the prin

wyolume is " * mybo:—cl.volume{))7

z; .
E% System.out.prlntln(
=i

In() is execute
sed to printIn().

d, myboxl.volume() will be called automatically

In this case, when print
and its value will be pas

Method That Takes Parameters

don’t need parameters, most do. Parameters allow a method to be

generalized. That is, a parameterized method can operate on a variety of data and/or
be used in a number of slightly different situations. To illustrate this point, let’s use
a very simple example. Here is a method that returns the square of the number 10:

Adding a

While some methods

int square()

return 10 * 10;

)

quared, its use is very

While this method does, indeed, return the value of 10 s
as shown

Jlimited. However, if i
; ,if you modify the method so that it t
akes a
next, then you can make square() much more useful. pRImEE

Scanned with CamScanner

cras>~-

eint
Chapler 6: fptrod®
fnl ' ' k)
|
" ¢ l‘l" 15
return the square of . . (e | “r”h. |
w AL T . allee ;
hi"l ver v ﬂllll |t iq Ce ‘e ('f '_‘”Y lﬂl. ’_,l r

lum'o()\\‘lll B
:unum ~1 mpnsv method that can l'tln‘l;‘ll“‘

\lt“\}“‘ is l‘l'“\' Al ? | ll]
sq? cather than just 10
valtt e is an examples
«, Y+
L .1‘1‘[‘\‘.--.\ : / % "l‘“):‘lf“ _T[|
| & :‘“ll'i"«“‘o"‘ x equals 81
X 2 bt
| cquale (31 ; /1 X equals 4
\' - 1
:) ‘ d
squ.‘irc(), the value 5 will be bassed into pnrametcr i. In th‘_: ‘::C(':O .
alue of ¥/ which 18 2 in

f whatever

|n the first C:Ill.ln 5y
ive the value 9. The third invocation passes the v
the square ©

all, i will rece
this example: A these examples show, square() is able to return

. . -'C .
ata ll 1S PnS:’
d ant to keep the two terms Pm'f-ml(.'lcr

tis importar
isa variable Jefined by a method that receives a v

and argument straight. A parameter
alue when the method 15 called.

nent is a value that is passed to
an argument.

For example, in square(), i is a parameter. An argur

smethod when it.15 invoked. For example, square(100) passes 100 as

[nside square(), the parameter i receives that value. .
You can use a parameterized method to improve the Box class. In the preceding

examples, the dimensions of each box had to be set separately by use of a sequence

of statements, such as:

mybox1 .width = 10;

myboxl.height = 20;

mybox1.depth = 153

easons. First, it is clumsy and error profx
dimension. Second, in well-designe
sed only through methods defined

thod, but you can’t chang

While this code works, it is troubling for twor

would be easy to forget toseta
variables should be acces
ange the behavior of a me

able.

For example, it
Java programs, instance
their class. In the future, you can ch
the behavior of an exposed instance vari

Scanned with CamScanner

139

\J,' /
\._/"

7~ apfpropriately.
r 4
a parametel ized me

/
'
. This

Java™ 2: The Complete Reference
./,//

h ;ﬁlwuvrnppm
{imension of

7
thateakes the ¢ D
P This concepl is 1m

a box is to create a method

ensions of |
ach instance variable

ach to setting the dim
a box in its parameters and sets e
plemented by the following program.

Lhod.

l'\l ogram nses

i

|
! -:l ciass Box {
‘ Jouble width;
| double heiaght;
suble depth:

|
!
i
!ﬁ

;.
i

~ompute and return volume

jouble valume()
return width * height * depth:;

// sets dimensions of box
void setDim(double w, double h,- double d) {

e

= W

!
E
;-' ‘\'idth = h
J :
}‘ height = h:
: depth = d;
| % 1
'r] -
2
r
f »
B class BoxDemo5 {
| public static void main(String argsl[]) {
' Box myboxl = new Box();
= new Box();

y Box mybox2

double vol;

// initialize each box il
20, 15);

myboxl.setDim (10,
6, 9);

mybox2.setDim(3,

get volume of first box

; vol = myboxl.volume();
System.out.println("Volume is " + vol);

//

l // get volume of second box
vol = mybox2.volume() ;
System.out.println("Volume is " + vol);

Scanned with CamScanner

@y

Chapter.6s .. (abradmeing B18089% SN

the setDim() mye ach box. For

ou can see, l]'l('}(.l is use

AsY d to set the dimensions of €

cetDim(10, 20, 15);

l n poxl
. s) ; into d.
10 is Copled mito parameter w, 20 is copied into h, and 1518 copled into

ocuted ' S aeniil
‘. 'd(eC::e:Dim() the values of w, h, and d are then assigned to width, height, and <€P
i

Ins : . iliar.
vely.) be fami
regpecflmal)w readers, the concepts presented in the preceding sections WIZW iy
For - if such things as method calls, arguments, and parameters are r:l'h " concepts
}-Im“’eve / jght want to take some time to experiment before moving of

) tal to Java
then YO thod invocatior, parameters, and return values are fundamen

Scanned with CamScanner

